本文共 10707 字,大约阅读时间需要 35 分钟。
VGG-19 和 VGG-16 的 prototxt文件
VGG-19 和 VGG-16 的 prototxt文件
VGG-16:
prototxt 地址:https://gist.github.com/ksimonyan/3785162f95cd2d5fee77#file-readme-mdcaffemodel 地址:http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel
VGG-19:
prototxt 地址:https://gist.github.com/ksimonyan/3785162f95cd2d5fee77#file-readme-mdcaffemodel 地址:http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel
VGG_16.prototxt 文件:
name: "VGG_ILSVRC_19_layer"layer {name: "data"type: "ImageData"top: "data"top: "label"include {phase: TRAIN}image_data_param {batch_size: 12source: "../../fine_tuning_data/HAT_fineTuning_data/train_data_fineTuning.txt"root_folder: "../../fine_tuning_data/HAT_fineTuning_data/train_data/"}}layer {name: "data"type: "ImageData"top: "data"top: "label"include {phase: TEST}transform_param {mirror: false}image_data_param {batch_size: 10source: "../../fine_tuning_data/HAT_fineTuning_data/test_data_fineTuning.txt"root_folder: "../../fine_tuning_data/HAT_fineTuning_data/test_data/"}}layer {bottom:"data" top:"conv1_1" name:"conv1_1" type:"Convolution" convolution_param {num_output:64 pad:1kernel_size:3 }}layer {bottom:"conv1_1" top:"conv1_1" name:"relu1_1" type:"ReLU" }layer {bottom:"conv1_1" top:"conv1_2" name:"conv1_2" type:"Convolution" convolution_param {num_output:64 pad:1kernel_size:3}}layer {bottom:"conv1_2" top:"conv1_2" name:"relu1_2" type:"ReLU" }layer {bottom:"conv1_2" top:"pool1" name:"pool1" type:"Pooling" pooling_param {pool:MAX kernel_size:2stride:2 }}layer {bottom:"pool1" top:"conv2_1" name:"conv2_1" type:"Convolution" convolution_param {num_output:128pad:1kernel_size:3}}layer {bottom:"conv2_1" top:"conv2_1" name:"relu2_1" type:"ReLU" }layer {bottom:"conv2_1" top:"conv2_2" name:"conv2_2" type:"Convolution" convolution_param {num_output:128 pad:1kernel_size:3}}layer {bottom:"conv2_2" top:"conv2_2" name:"relu2_2" type:"ReLU" }layer {bottom:"conv2_2" top:"pool2" name:"pool2" type:"Pooling" pooling_param {pool:MAXkernel_size:2 stride:2 }}layer {bottom:"pool2" top:"conv3_1" name: "conv3_1"type:"Convolution" convolution_param {num_output:256 pad:1kernel_size:3}}layer {bottom:"conv3_1" top:"conv3_1" name:"relu3_1" type:"ReLU" }layer {bottom:"conv3_1" top:"conv3_2" name:"conv3_2" type:"Convolution" convolution_param {num_output:256pad:1kernel_size:3}}layer {bottom:"conv3_2" top:"conv3_2" name:"relu3_2" type:"ReLU" }layer {bottom:"conv3_2" top:"conv3_3" name:"conv3_3" type:"Convolution" convolution_param {num_output:256 pad:1 kernel_size:3}}layer {bottom:"conv3_3" top:"conv3_3"name:"relu3_3" type:"ReLU" }layer {bottom:"conv3_3" top:"conv3_4" name:"conv3_4" type:"Convolution" convolution_param {num_output:256pad:1kernel_size:3}}layer {bottom:"conv3_4" top:"conv3_4" name:"relu3_4" type:"ReLU" }layer {bottom:"conv3_4" top:"pool3" name:"pool3" type:"Pooling" pooling_param {pool:MAX kernel_size: 2stride: 2}}layer {bottom:"pool3" top:"conv4_1" name:"conv4_1" type:"Convolution" convolution_param {num_output: 512pad: 1kernel_size: 3}}layer {bottom:"conv4_1" top:"conv4_1" name:"relu4_1" type:"ReLU" }layer {bottom:"conv4_1" top:"conv4_2" name:"conv4_2" type:"Convolution" convolution_param {num_output: 512pad: 1kernel_size: 3}}layer {bottom:"conv4_2" top:"conv4_2" name:"relu4_2" type:"ReLU" }layer {bottom:"conv4_2" top:"conv4_3" name:"conv4_3" type:"Convolution" convolution_param {num_output: 512pad: 1kernel_size: 3}}layer {bottom:"conv4_3" top:"conv4_3" name:"relu4_3" type:"ReLU" }layer {bottom:"conv4_3" top:"conv4_4" name:"conv4_4" type:"Convolution" convolution_param {num_output: 512pad: 1kernel_size: 3}}layer {bottom:"conv4_4" top:"conv4_4" name:"relu4_4" type:"ReLU" }layer {bottom:"conv4_4" top:"pool4" name:"pool4" type:"Pooling" pooling_param {pool:MAXkernel_size: 2stride: 2}}layer {bottom:"pool4" top:"conv5_1" name:"conv5_1" type:"Convolution" convolution_param {num_output: 512pad: 1kernel_size: 3}}layer {bottom:"conv5_1" top:"conv5_1" name:"relu5_1" type:"ReLU" }layer {bottom:"conv5_1" top:"conv5_2" name:"conv5_2" type:"Convolution" convolution_param {num_output: 512pad: 1kernel_size: 3}}layer {bottom:"conv5_2" top:"conv5_2" name:"relu5_2" type:"ReLU" }layer {bottom:"conv5_2" top:"conv5_3" name:"conv5_3" type:"Convolution" convolution_param {num_output: 512pad: 1kernel_size: 3}}layer {bottom:"conv5_3" top:"conv5_3" name:"relu5_3" type:"ReLU" }layer {bottom:"conv5_3" top:"conv5_4" name:"conv5_4" type:"Convolution" convolution_param {num_output: 512pad: 1kernel_size: 3}}layer {bottom:"conv5_4" top:"conv5_4" name:"relu5_4" type:"ReLU" }layer {bottom:"conv5_4" top:"pool5" name:"pool5" type:"Pooling" pooling_param {pool:MAX kernel_size: 2stride: 2}}layer {bottom:"pool5" top:"fc6_" name:"fc6_" type:"InnerProduct" inner_product_param {num_output: 4096}}layer {bottom:"fc6_" top:"fc6_" name:"relu6" type:"ReLU" }layer {bottom:"fc6_" top:"fc6_" name:"drop6" type:"Dropout" dropout_param {dropout_ratio: 0.5}}layer {bottom:"fc6_" top:"fc7" name:"fc7" type:"InnerProduct" inner_product_param {num_output: 4096}}layer {bottom:"fc7" top:"fc7" name:"relu7" type:"ReLU" }layer {bottom:"fc7" top:"fc7" name:"drop7" type:"Dropout" dropout_param {dropout_ratio: 0.5}}layer {bottom:"fc7" top:"fc8_" name:"fc8_" type:"InnerProduct" inner_product_param {num_output: 43}}layer {name: "sigmoid"type: "Sigmoid"bottom: "fc8_"top: "fc8_"}layer {name: "accuracy"type: "Accuracy"bottom: "fc8_"bottom: "label"top: "accuracy"include {phase: TEST}}layer {name: "loss"type: "EuclideanLoss"bottom: "fc8_"bottom: "label"top: "loss"}
name: "VGG_ILSVRC_16_layer"layers {name: "data"type: IMAGE_DATAtop: "data"top: "label"include {phase: TRAIN}image_data_param {batch_size: 80source: "/home/wangxiao/SUN397_part/selected_sun/Sun-100/Sun_100_Labeled_Train_0.5_.txt"root_folder: "/home/wangxiao/SUN397_part/selected_sun/Sun-100/train_image_sun_256_256/"new_height: 224new_width: 224}}layers {name: "data"type: IMAGE_DATAtop: "data"top: "label"include {phase: TEST}transform_param {mirror: false}image_data_param {batch_size: 10source: "/home/wangxiao/SUN397_part/selected_sun/Sun-100/Sun_100_Test_0.5_.txt"root_folder: "/home/wangxiao/SUN397_part/selected_sun/Sun-100/test_image_sun_227_227/"new_height:224new_width:224}}layers { bottom: "data" top: "conv1_1" name: "conv1_1" type: CONVOLUTION convolution_param { num_output: 64 pad: 1 kernel_size: 3 }}layers { bottom: "conv1_1" top: "conv1_1" name: "relu1_1" type: RELU}layers { bottom: "conv1_1" top: "conv1_2" name: "conv1_2" type: CONVOLUTION convolution_param { num_output: 64 pad: 1 kernel_size: 3 }}layers { bottom: "conv1_2" top: "conv1_2" name: "relu1_2" type: RELU}layers { bottom: "conv1_2" top: "pool1" name: "pool1" type: POOLING pooling_param { pool: MAX kernel_size: 2 stride: 2 }}layers { bottom: "pool1" top: "conv2_1" name: "conv2_1" type: CONVOLUTION convolution_param { num_output: 128 pad: 1 kernel_size: 3 }}layers { bottom: "conv2_1" top: "conv2_1" name: "relu2_1" type: RELU}layers { bottom: "conv2_1" top: "conv2_2" name: "conv2_2" type: CONVOLUTION convolution_param { num_output: 128 pad: 1 kernel_size: 3 }}layers { bottom: "conv2_2" top: "conv2_2" name: "relu2_2" type: RELU}layers { bottom: "conv2_2" top: "pool2" name: "pool2" type: POOLING pooling_param { pool: MAX kernel_size: 2 stride: 2 }}layers { bottom: "pool2" top: "conv3_1" name: "conv3_1" type: CONVOLUTION convolution_param { num_output: 256 pad: 1 kernel_size: 3 }}layers { bottom: "conv3_1" top: "conv3_1" name: "relu3_1" type: RELU}layers { bottom: "conv3_1" top: "conv3_2" name: "conv3_2" type: CONVOLUTION convolution_param { num_output: 256 pad: 1 kernel_size: 3 }}layers { bottom: "conv3_2" top: "conv3_2" name: "relu3_2" type: RELU}layers { bottom: "conv3_2" top: "conv3_3" name: "conv3_3" type: CONVOLUTION convolution_param { num_output: 256 pad: 1 kernel_size: 3 }}layers { bottom: "conv3_3" top: "conv3_3" name: "relu3_3" type: RELU}layers { bottom: "conv3_3" top: "pool3" name: "pool3" type: POOLING pooling_param { pool: MAX kernel_size: 2 stride: 2 }}layers { bottom: "pool3" top: "conv4_1" name: "conv4_1" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 }}layers { bottom: "conv4_1" top: "conv4_1" name: "relu4_1" type: RELU}layers { bottom: "conv4_1" top: "conv4_2" name: "conv4_2" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 }}layers { bottom: "conv4_2" top: "conv4_2" name: "relu4_2" type: RELU}layers { bottom: "conv4_2" top: "conv4_3" name: "conv4_3" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 }}layers { bottom: "conv4_3" top: "conv4_3" name: "relu4_3" type: RELU}layers { bottom: "conv4_3" top: "pool4" name: "pool4" type: POOLING pooling_param { pool: MAX kernel_size: 2 stride: 2 }}layers { bottom: "pool4" top: "conv5_1" name: "conv5_1" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 }}layers { bottom: "conv5_1" top: "conv5_1" name: "relu5_1" type: RELU}layers { bottom: "conv5_1" top: "conv5_2" name: "conv5_2" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 }}layers { bottom: "conv5_2" top: "conv5_2" name: "relu5_2" type: RELU}layers { bottom: "conv5_2" top: "conv5_3" name: "conv5_3" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 }}layers { bottom: "conv5_3" top: "conv5_3" name: "relu5_3" type: RELU}layers { bottom: "conv5_3" top: "pool5" name: "pool5" type: POOLING pooling_param { pool: MAX kernel_size: 2 stride: 2 }}layers { bottom: "pool5" top: "fc6" name: "fc6" type: INNER_PRODUCT inner_product_param { num_output: 4096 }}layers { bottom: "fc6" top: "fc6" name: "relu6" type: RELU}layers { bottom: "fc6" top: "fc6" name: "drop6" type: DROPOUT dropout_param { dropout_ratio: 0.5 }}layers { bottom: "fc6" top: "fc7" name: "fc7" type: INNER_PRODUCT inner_product_param { num_output: 4096 }}layers { bottom: "fc7" top: "fc7" name: "relu7" type: RELU}layers { bottom: "fc7" top: "fc7" name: "drop7" type: DROPOUT dropout_param { dropout_ratio: 0.5 }}layers { bottom: "fc7" top: "fc8_" name: "fc8_" type: INNER_PRODUCT inner_product_param { num_output: 88 }}layers { name: "accuracy" type: ACCURACY bottom: "fc8_" bottom: "label" top: "accuracy" include { phase: TEST }}layers{ name: "loss" type: SOFTMAX_LOSS bottom: "fc8_" bottom: "label" top: "loss"}
转载地址:http://jaxwl.baihongyu.com/